Expectations of primary school teachers regarding the use of artificial intelligence in teaching-learning processes in vulnerable contexts
PDF (Spanish)

Keywords

artificial intelligence
primary education
teacher expectations
vulnerable contexts
teaching and learning

How to Cite

Expectations of primary school teachers regarding the use of artificial intelligence in teaching-learning processes in vulnerable contexts. (2026). Scientific Journal T&E, 1(1), 81-100. https://journals.uted.us/ojs/index.php/scientific/article/view/15

Abstract

The present scoping review analyses the expectations that primary school teachers have regarding the use of Artificial Intelligence (AI) in teaching–learning processes in vulnerable contexts, through a bibliometric analysis of current studies in indexed databases using the Prisma-ScR methodology. The search allowed the retrieval of 205 records, of which twelve met the inclusion criteria. The findings were classified into six thematic categories: positive expectations toward AI and its potential in vulnerable contexts; fear or uncertainty regarding teacher replacement; technological and infrastructure barriers; effects on socialization, privacy, and ethics; relevance of teacher training and support; and pedagogical approaches aimed at personalization and information quality. The results suggest that AI has the potential to foster personalized learning; however, there are challenges related to resources, privacy, information reliability, and the difficulty associated with the requirements for its implementation. Governments should place emphasis on the creation of ethical frameworks, teacher training, and AI use policies specific to primary education in vulnerable contexts.

PDF (Spanish)

References

Abar, C. A. A. P., Dos Santos, J. M. D. S., & de Almeida, M. V. (2021). Computational Thinking in Basic School in the Age of Artificial Intelligence: Where is the Teacher? Acta Scientiae, 23(6), 270–299. https://doi.org/10.17648/acta.scientiae.6869

Adams, C., Pente, P., Lemermeyer, G., & Rockwell, G. (2023). Ethical principles for artificial intelligence in K-12 education. Computers and Education: Artificial Intelligence, 4, 100131. https://doi.org/10.1016/j.caeai.2023.100131

Alonso-Secades, V., López-Rivero, A.-J., Martín-Merino-Acera, M., Ruiz-García, M.-J., & Arranz-García, O. (2022). Designing an intelligent virtual educational system to improve the efficiency of primary education in developing countries. Electronics, 11(9), 1487. https://doi.org/10.3390/electronics11091487

Arteaga, C. A. C., & Gómez, J. S. Z. (2025). Tipos de usos de las TIC por parte de los docentes en sus prácticas pedagógicas. Scientific Journal T & E, 1(2), 203–229. https://doi.org/10.48204/3072-9653.6875

Brailovsky, D. (2025). Educación Digital Integral: un desafío para la educación de las infancias. Espacios en blanco. Serie indagaciones, 35(1), 2-2. https://doi.org/10.37177/UNICEN/EB34-431

Dai, Y., Liu, A., Qin, J., Guo, Y., Jong, M. S., Chai, C., & Lin, Z. (2023). Collaborative construction of artificial intelligence curriculum in primary schools. Journal of Engineering Education, 112(1), 23–42. https://doi.org/10.1002/jee.20503

Filiz, O., Kaya, M. H., & Adiguzel, T. (2025). Teachers and AI: Understanding the factors influencing AI integration in K-12 education. Education and Information Technologies, 1–37. https://doi.org/10.1007/s10639-025-13463-2

Forján, R., & Morelatto, G. (2018). Estudio comparativo de factores de resiliencia en docentes de contextos socialmente vulnerables. Psicogente, 21(40), 277-296. https://doi.org/10.17081/psico.21.40.3075

INEE, Instituto Nacional para la Evaluación de la Educación. (2019). La educación obligatoria en México. Informe 2019. Perfiles educativos, 41(164), 188-199. https://doi.org/10.22201/iisue.24486167e.2019.164.59386

Kuleto, V., Ilić, M. P., Bucea-Manea-Țoniş, R., Ciocodeică, D.-F., Mihălcescu, H., & Mindrescu, V. (2022). The attitudes of K–12 Schools’ teachers in Serbia towards the potential of artificial intelligence. Sustainability, 14(14), 8636. https://doi.org/10.3390/su14148636

Lezcano Acuña, R. C., & Hilgert, N. I. (2023). Desafíos y oportunidades de la enseñanza de la biología en contextos interculturales: La etnobiología como herramienta para la incorporación de los conocimientos ecológicos tradicionales. http://dx.doi.org/10.18542/ethnoscientia.v8i3.14970

Lindín, C. (2024). Estrategias para la incorporación de la inteligencia artificial en educación a partir de ChatGPT: Oportunidades y dilemas para profesorado, alumnado e investigación-publicación. Didacticae: Revista de Investigación En Didácticas Específicas, 15. http://dx.doi.org/10.1344/did.43107

López-Cortés, O. D., Betancourt-Núñez, A., Bernal Orozco, M. F., & Vizmanos, B. (2022). Scoping reviews: una nueva forma de síntesis de la evidencia. Investigación en educación médica, 11(44), 98-104. https://doi.org/10.22201/fm.20075057e.2022.44.22447

Luna-Martínez , A. (2025). Docencia y revolución tecnológica. Líneas formativas desde una interpretación analógica. Revista Construyendo Paz Latinoamericana, 10(21). https://doi.org/10.35600/25008870.2025.21.0375.1

Mohammed, A. S. (2023). Examining the Implementation of Artificial Intelligence in Early Childhood Education Settings in Ghana: Educators’ Attitudes and Perceptions towards Its Long-Term Viability. Online Submission, 2(4), 36–49. https://doi.org/10.54536/ajet.v2i4.2201

Mouta, A., Torrecilla-Sánchez, E. M., & Pinto-Llorente, A. M. (2025). Comprehensive professional learning for teacher agency in addressing ethical challenges of AIED: Insights from educational design research. Education and Information Technologies, 30(3), 3343–3387. https://doi.org/10.1007/s10639-024-12946-y

Nazaretsky, T., Ariely, M., Cukurova, M., & Alexandron, G. (2022). Teachers’ trust in AI‐powered educational technology and a professional development program to improve it. British Journal of Educational Technology, 53(4), 914–931. https://doi.org/10.1111/bjet.13232

Ottenbreit-Leftwich, A., Glazewski, K., Jeon, M., Jantaraweragul, K., Hmelo-Silver, C. E., Scribner, A., Lee, S., Mott, B., & Lester, J. (2023). Lessons learned for AI education with elementary students and teachers. International Journal of Artificial Intelligence in Education, 33(2), 267–289. https://doi.org/10.1007/s40593-022-00304-3

Rizos, I., Foykas, E., & Georgakopoulos, S. V. (2024). Enhancing Mathematics Education for Students with Special Educational Needs through Generative AI: A Case Study in Greece. Contemporary Educational Technology, 16(4). https://doi.org/10.30935/cedtech/15487

Rodrigues, L., Guerino, G., Silva, T. E. V, Challco, G. C., Oliveira, L., da Penha, R. S., Melo, R. F., Vieira, T., Marinho, M., & Macario, V. (2025). Mathaide: A qualitative study of teachers’ perceptions of an its unplugged for underserved regions. International Journal of Artificial Intelligence in Education, 35(1), 2–30. https://doi.org/10.1007/s40593-024-00397-y

Rutatola, E. P., Stroeken, K., & Belpaeme, T. (2025). ‘ Habari, Colleague!’: A Qualitative Exploration of the Perceptions of Primary School Mathematics Teachers in Tanzania Regarding the Use of Social Robots. Applied Sciences (2076-3417), 15(15). https://doi.org/10.3390/app15158483

Rutherford, T., Rodrigues, A., Duque-Baird, S., Veng, S., Mykyta-Chomsky, R., Cao, Y., Chisholm, K., & Bergwall, E. (2025). “I just think it is the way of the future”: Teachers’ use of ChatGPT to develop motivationally-supportive math lessons. Computers and Education: Artificial Intelligence, 8, 100367. https://doi.org/10.1016/j.caeai.2025.100367

Sangoluisa Caiza, R. (2021). La educación para personas de escasos recursos y grupos vulnerables. Una mirada desde el Ecuador. Conrado, 17(82), 86-95. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1990-86442021000500086

Setyawan, H., & Purbohadi, D. (2025). Experimenting with AI-based mobile applications to improve student engagement in ornamental plant learning in rural Indonesian schools. Edelweiss Applied Science and Technology, 9(3), 2333–2343. https://doi.org/10.55214/25768484.v9i3.5787

Tricco, A.C., Lillie, E., Zarin, W. et al. (2016). A scoping review on the conduct and reporting of scoping reviews. BMC Med Res Methodol 16, 15. https://doi.org/10.1186/s12874-016-0116-4

Uğraş, H., Uğraş, M., Papadakis, S., & Kalogiannakis, M. (2024). ChatGPT-supported education in primary schools: The potential of ChatGPT for sustainable practices. Sustainability, 16(22), 9855. https://doi.org/10.3390/su16229855

Viberg, O., Cukurova, M., Feldman-Maggor, Y. et al. (2025). What Explains Teachers’ Trust in AI in Education Across Six Countries?. Int J Artif Intell Educ 35, 1288–1316. https://doi.org/10.1007/s40593-024-00433-x

Wang, R. E., Ribeiro, A. T., Robinson, C. D., Loeb, S., & Demszky, D. (2025). Tutor CoPilot: A Human-AI Approach for Scaling Real-Time Expertise. EdWorkingPaper No. 24-1054. Annenberg Institute for School Reform at Brown University. https://doi.org/10.26300/81nh-8262

White, C. M., Díaz Tafur, J. I., Segovia Ospina, I., Quintero Medina, B., & Castaño Guiza, Y. (2005). Lineamientos de política para la atención educativa a poblaciones vulnerables. Revolución educativa, Colombia aprende, 10-11. https://www.mineducacion.gov.co/1621/article-90668.html

Yancovic-Allen, M., & Escobar-González, S. (2021). Percepciones de docentes en formación de pedagogía básica sobre educar en contextos vulnerables. Revista Educación, 46(1), 1-13. https://doi.org/10.15517/revedu.v46i1.43787

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Downloads

Download data is not yet available.